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Abstract 

To overcome the major disadvantages of cysteamine, the only registered treatment for the rare 

genetic disease cystinosis, nine prodrugs of γ-glutamyl-cysteamine (4) were synthesized for 

evaluation. Esterification of the thiol conferred oxidative stability, while sufficient lipophilicity for 

oral bioavailability was achieved by acylation of the α-carboxyl group of γ-glutamyl-cysteamine 

(4). Low cytotoxicity was observed in cultured HaCaT keratinocytes using the MTT assay, with 

EC50 values higher than or similar to that of cysteamine. Successful uptake of the esterified 

prodrugs and the subsequent release of cysteamine into cultured human proximal tubule epithelial 

cells were demonstrated using CMQT derivatisation and HPLC with UV detection. These prodrugs 

show potential as novel delivery vehicles of cysteamine to improve the treatment of the genetic 

disorder nephropathic cystinosis. 
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1. Introduction 

Nephropathic cystinosis is an autosomal recessive disorder, characterized by the 

accumulation of cystine crystals within the lysosomes of all cells, as a result of deficiency of the 

cystine transporter protein. The initial symptoms of cystinosis result from the failure of renal 

tubules to reabsorb small molecules, causing Fanconi syndrome and the associated polyuria, 

glucosuria, phosphaturia, and proteinuria [1]. While kidney involvement is one of the classical 

features of cystinosis, it has been recognized more recently as a multi-systemic disease, due to 

cystine accumulation in, and damage to, non-renal organs and tissues [1,2]. Untreated, this disease 

progresses, usually resulting in damage to all organs and death by the age of 10 [3]. Treatment of 

cystinosis is typically by administration of the aminothiol, cysteamine (as the bitartrate salt, 

Cystagon®, or as its sustained release formulation, Procysbi®), which reduces lysosomal cystine 

levels and therefore delays disease progression. However, there are several problems with its 

administration, which can lead to non-compliance in a large proportion of those affected [4]. Even 

as the bitartrate salt, cysteamine has an intensely unpleasant taste and smell, resulting in nausea and 

vomiting [1], and frequently causes disturbance of the gastrointestinal (GI) mucosa; gastric or 

duodenal ulceration is a common side effect [5]. Extensive first pass metabolism of cysteamine after 

oral administration leads to urinary excretion of its conjugates, an estimated bioavailability of 10-

30% [2], and significant amounts of dimethyl sulfide and methane thiol exhaled in the breath and 

through the pores of the skin as body odour [6]. To maintain a therapeutic plasma concentration, 60-

90 mg/kg/day of cysteamine is required in four divided doses [7], reaching 1 g (as either 50 or 150 

mg tablets) per dose for many patients. The importance of a six hourly intake of Cystagon®, despite 

disruption to sleep, was demonstrated by a significant increase in polymorphonuclear cystine levels 

after 9 hourly dosing, when compared to a six hour dosing interval [8]. The sustained release form 

Procysbi® allows dosing at 12 hour intervals, alleviating the issue of sleep disturbance, but, as it still 

releases cysteamine in the GI tract, the problems of first pass metabolism resulting in low 
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bioavailability, the release of strong smelling metabolites, and the gastric disturbance issues are not 

significantly addressed [9]. Additionally, a cysteamine concentration effect on cell viability and cell 

proliferation was observed in several cell lines, including cultured human fibroblasts, and 

excessively high doses of cysteamine have been linked to the appearance of bruise-like lesions on a 

number of cystinotic patients [10]. 

Cysteamine is also of interest for its potential in treating other diseases, such as 

Huntington’s disease [11,12], cystic fibrosis [13-15], chronic kidney disease [16], and non-alcoholic 

fatty liver disease (NAFLD), including non-alcoholic steatohepatitis (NASH) [17]. A current 

clinical trial is evaluating the potential of Procysbi® as a disease-modifying treatment for 

Huntington’s disease. If the scope of cysteamine as a treatment increases to include these other 

diseases, similar compliance problems due to its side effects are likely and alternative delivery 

approaches therefore have wider potential application than to cystinosis alone. 

Cysteamine exerts its therapeutic effect due to its ability to undergo a thiol exchange with 

cystine, resulting in the formation of cysteine and a cysteine-cysteamine mixed disulfide [18] 

(Scheme 1), which can efflux the lysosome via the transport protein PQLC2. Evidence for the 

involvement of this transporter in the cysteamine-driven depletion of cystine was obtained by its 

genetic inactivation or silencing [19,20]. Molecular modeling has shown the structural and 

electronic similarities of the L-cysteine-cysteamine mixed disulfide to L-lysine, facilitating its use of 

this transporter [21]. 

 

Scheme 1:  Intralysosomal thiol exchange of cysteamine with cystine forms a cysteine-cysteamine dimer and 

cysteine, both of which can efflux the lysosome 

The thiol and amino groups of cysteamine are therefore vital for its role in the treatment of 

cystinosis, but the unpleasant taste and smell contribute to low levels of patient compliance. Our 
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initial work demonstrated the feasibility of amino acid-cysteamine conjugates as prodrugs, the 

depletion of cystine providing evidence of their delivery of cysteamine to cystinotic cells, with a 

delayed response consistent with the requirement for hydrolysis of the amino acid-cysteamine 

amide bond to release the active agent cysteamine [21]. A major drawback to these simple amino 

acid-cysteamine derivatives was their lack of clinical relevance; in particular, the thiol group 

confers nucleophilic and reducing properties, with disulfide bond forming potential, while α-amino 

acid prodrugs are known to be readily hydrolyzed in the blood [22], which would release 

cysteamine and fail to prevent its metabolism. However, the initial studies also showed good 

depletion of accumulated cystine in cystinotic cells by γ-glutamyl-cysteamine, providing evidence 

of hydrolysis of the γ-glutamyl amide bond and release of cysteamine, while the α-glutamyl-

cysteamine analogue performed poorly in comparison [21]. Initial viability experiments using γ-

glutamyl-cysteamine in cells with a high expression of γ-glutamyl transpeptidase (GGT), an 

external cell surface enzyme that recognises and hydrolyses γ-glutamyl-derivatives, indicated low 

cytotoxicity [21], providing encouragement for the further development of γ-glutamyl-cysteamine 

into a clinical candidate.  

Prodrug design and rationale 

Two further groups that are capable of bioactivation were required to convert γ-glutamyl-

cysteamine into a candidate for clinical use: acylation of the thiol group to confer oxidative stability 

and an α-carboxyl ester to address the likely limitation to oral bioavailability caused by the 

zwitterionic nature of γ-glutamyl-cysteamine 4 (Figure 1). These modifications resulted in S-

thioester and α-carboxyl ester γ-glutamyl-cysteamine derivatives 1a-c, 2a-c, and 3a-c (Figure 1). 

The combined effects of varied thioester and ester groups enable a limited investigation of suitable 

prodrug groups with desirable pharmacokinetic and pharmacodynamic properties for the effective 

treatment of cystinosis by oral administration. Esterification of carboxylic acid, alcohol and thiol 

groups on pharmaceutical products is a successful strategy to overcome chemical instability and 

limited oral bioavailability, with convincing evidence from their extensive clinical application [23-
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25]. Ester prodrugs are hydrolysed rapidly after uptake from the GI tract by blood and liver 

esterases, human carboxylesterases 1 and 2 (hCE1 and hCE2), with half-lives typically 10-30 

minutes [24]. 

 

 

 Figure 1: γ-Glutamyl-cysteamine prodrugs 1a-c, 2a-c and 3a-c and key intermediate γ-glutamyl-

cysteamine 4 

There are three distinct enzyme cleavage steps to release cysteamine from the prodrugs 

(Scheme 2), presenting two main ways to deliver the active agent cysteamine into cells after 

absorption from the GI tract. Firstly, satisfactory lipophilicity of the prodrugs permits rapid uptake 

into cells directly from the blood. Once inside the cells, the prodrugs are hydrolysed to release 

cysteamine, by thio/esterase activity and hydrolysis of the γ-glutamyl bond, probably by γ-glutamyl 

cyclotransferase. Alternatively, after uptake from the GI tract into the hepatic portal vein, the 

prodrugs undergo rapid esterase hydrolysis of the α-carboxyl ester (R1) and thioester (R2) groups in 

the blood and/or liver to release the key intermediate 4, targeted to γ-glutamyl transpeptidase (GGT) 

on the surface of cells. Interaction of γ-glutamyl-cysteamine 4 with membrane-bound GGT results 

in the hydrolysis of γ-glutamyl-cysteamine 4 and local release of cysteamine on the surface of the 

cell, allowing its rapid internalisation. Our previous studies provide evidence for the success of this 

approach: incubation of cystinotic cells in medium containing γ-glutamyl-cysteamine 4 resulted in 

significant depletion of cystine [21]. 
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Scheme 2:  Sequential enzymatic hydrolysis of γ-glutamyl-cysteamine prodrugs 1-3a-c to release cysteamine. 

Although a low level of serum GGT is normal in humans and is increased in various disease 

states, such as alcoholic liver disease, the normal activity of serum GGT is around 30 times lower 

than that of membrane-bound GGT [26] and is likely to make only a small contribution to the 

release of cysteamine in the circulation. The greater resistance of γ-glutamyl amide derivatives than 

their α-amide isomers to proteolytic degradation by serum proteases, due to low levels of serum γ-

glutamyl hydrolysis [27], minimizes premature proteolysis of the γ-glutamyl-cysteamine bond in 

serum. 

GGT is known to recognize a variety of small molecules linked to glutamate via an amide 

bond at the γ-carboxyl group [28,29]. It is expressed on the surface of many cells across various 

tissues, including the proximal convoluted tubule cells of the kidney [30], the intestinal epithelium 

[31], and the luminal surface of the blood brain barrier [32]; the accumulation of cystine appears to 

correlate with those cells expressing GGT. The high expression of GGT on renal cells enables 

increased delivery of cysteamine to these cells, which are the first to display pathology related to 

cystine accumulation, leading to poor reuptake of essential electrolytes and Fanconi syndrome. In 

cystinosis, however, cystine accumulates in the majority of cells and tissues throughout the body; 

the wide expression of GGT on cells and tissues therefore allows delivery of cysteamine to all cells, 
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providing an appropriate multi-systemic treatment for cystinosis. Targeted delivery and GGT-

mediated release of cysteamine on the surface of cells is expected to result in its rapid uptake into 

cells in the near vicinity, reducing the amount of free cysteamine released into the circulation and 

minimizing the opportunity for liver metabolism of cysteamine, maximizing its bioavailability. 

Benefits would include a less frequent and reduced therapeutic dose, minimizing issues associated 

with high peak serum cysteamine concentration, including the production of noxious smelling 

metabolites. 

The success of a similar GGT-targeting strategy for the delivery of a cytotoxic glutathione 

analogue to pancreatic tumours was recently demonstrated [26]. The low serum activity of GGT 

normally observed in humans resulted in only minimal activation of the antitumour agent 

systemically. Targeted delivery was also achieved to the kidney with N-acyl-γ-glutamyl prodrugs of 

sulfamethoxazole [33] and administration of the double prodrug γ-glutamyl-L-DOPA resulted in a 

five-fold greater accumulation of renal dopamine than the corresponding dose of the single prodrug 

L-DOPA [34]. 

We present here our studies on nine S- and O- diacylated γ-glutamyl-cysteamine prodrugs 

— their synthesis and the in vitro evaluation of their cytotoxicity, lipophilicity, cellular uptake and 

hydrolysis to release cysteamine. 

2. Results  

2.1 Prodrug synthesis 

The synthesis of esterified prodrugs 1a-c, 2a-c and 3a-c was achieved by solution phase 

peptide coupling (Scheme 3).  

α-Esterification of commercially sourced benzyl ester 5 with the appropriate alkyl bromide 

under mildly basic conditions gave esters 6a-c in good yield. Palladium-catalyzed reductive 

deprotection yielded the γ-carboxylic acids 7a-c, which were coupled with cysteamine using 

diisopropylcarbodiimide (DIC) and 1-hydroxybenzotriazole (HOBt) to give γ-glutamyl-cysteamine 

derivatives 8a-c. 
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Compound R2 Yields 

1 CH3 1a (81 %), 1b (79 %), 1c (67 %) 

2 Ph 2a (67%), 2b (52%), 2c (94%) 

3 (CH3)3 3a (71 %), 3b (88 %), 3c (71 %) 

9 CH3 9a (34 %), 9b (62 %), 9c (56 %) 

10 Ph 10a (25 %), 10b (24 %), 10c (47 %) 

11 (CH3)3 11a (56 %), 11b (43 %), 11c (40 %) 

 

Scheme 3: General synthetic pathway to esterified prodrugs 1a-c, 2a-c and 3a-c.  

Reagents and conditions: (i) MeOH/H2O, Cs2CO3, RT, 24 h; (ii), R-Br, DMF, RT, 24 h; (iii), Pd-C, H2, MeOH, RT, 3 

h; (iv) Diisopropylcarbodiimide, HOBt, cysteamine hydrochloride, Et3N, DCM, 0ºC-RT, 24 h; (v) acetic anhydride, 

Et3N, THF, 40ºC, 24 h; (vi) benzoyl chloride, pyridine, DCM, RT, 24 h; (vii) pivaloyl chloride, pyridine, DCM, RT, 24 

h; (viii) HCl (2M) in diethyl ether, RT. 

Thioesters 9a-c were formed using acetic anhydride and triethylamine, while thioesters 10a-

c and 11a-c were prepared using benzoyl chloride or pivaloyl chloride, as appropriate, and pyridine. 

t-Boc deprotection of compounds 9-11 using hydrochloric acid (2M) in diethyl ether gave the nine 

target esterified prodrugs 1a-c, 2a-c and 3a-c, respectively.  
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2.2 Cytotoxicity Studies   

Despite its limitations, the MTT assay allows early identification of cytotoxic or other 

adverse cellular effects. Initial cytotoxicity studies on esterified prodrugs 1a-c, 2a-c and 3a-c, 

compared to cysteamine hydrochloride, were carried out using spontaneously transformed 

keratinocytes from histologically normal skin (HaCaT) using a standard MTT assay, in which 

yellow MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) is reduced to purple 

formazan in metabolically active cells [35]. Percentage survival value at each concentration was 

derived from the data of 12 replicates, which were averaged and normalised to calculate the 

percentage survival. In this work, the results of the in vitro tests are expressed as EC50, which 

represents the mean dose required to kill half of the members of a test in vitro population. The EC50 

values (calculated using GraphPad Prism®) for γ-glutamyl-cysteamine prodrugs and cysteamine 

hydrochloride (Table 1) represent the dose required to kill 50% of the cells. 

Table 1: Mean (n = 12) EC50 values (±±±± standard error) of esterified γ-glutamyl-cysteamine prodrugs 1a-c, 2a-c 

and 3a-c and cysteamine hydrochloride in cultured HaCaT keratinocytes. 

Compound 1a 1b 1c 2a 2b 2c 3a 3b 3c 
Cysteamine. 

HCl 

EC50 (µM) 
1732 

(3.74) 

548 

(3.21) 

563 

(3.22) 

331 

(2.74) 

75 

(2.84) 

97 

(3.19) 

228 

(3.03) 

152 

(10.00) 

102 

(10.31) 

309 

(9.82) 

 

The range of EC50 values across the prodrugs underlines the importance of the correct 

choice of thioester and ester groups. In each thioester series, the ethyl esters (1a, 2a and 3a) showed 

lower cytotoxicity than their propyl and butyl analogues. It is unlikely that these differences are 

caused by differential uptake of the prodrugs due to the lipophilicity of the ester groups, as the 

efficient uptake of all members of the 1st series (1a, 1b and 1c) was confirmed in subsequent 

experiments, when the intracellular cysteamine levels achieved by ethyl ester 1a were comparable 

to those achieved by propyl ester 1b and butyl ester 1c (Figure 2). The relatively low cytotoxicity of 

acetyl thioester prodrugs 1a-c and ethyl esters 2a and 3a led to selection of these prodrugs for 

progression to further studies designed to evaluate the uptake of these ester/thioester prodrugs of γ-
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glutamyl-cysteamine 4 into cultured cell lines and their subsequent intracellular hydrolysis to 

release cysteamine. Ethyl ester prodrug 3a was included for testing, even though it showed greater 

cytotoxicity than cysteamine hydrochloride, to provide an example from each series. 

 

2.3 Physicochemical properties of esterified prodrugs 

The oral bioavailability of pharmaceuticals is heavily influenced by the balance of aqueous 

solubility and lipophilicity, which are affected by the pKa of any ionisable groups and the 

consequent log P of the molecule at physiological pH values. Early investigation of these properties 

is therefore desirable.  

Experimentally measured pKa and log P values (MlogP) were obtained using a Sirius T3 and 

compared with the calculated log P values (ClogP; ChemDraw®) and the log D values (derived 

from the Sirius T3 experimental data (Equation 1)) at pH 7.4 (Table 2).  

���	�	 = ���	�	 − ���(1 + 10(������……………………….Equation 1 

Table 2: Measured pKa (±±±± standard error), calculated log P (ClogP, ChemDraw
®

), measured log P values 

(MlogP) and log D values (triplicate measurements) of ester/thioester γ-glutamyl cysteamine prodrugs 1a-c, 2a 

and 3a, compared to cysteamine hydrochloride and cystamine dihydrochloride. 

Prodrug R R' 

pKa 

(experimental) 

ClogP MlogP log D at pH7.4 

1a CH
2
CH

3
 CH

3
 8.94 (±0.29) - 0.98 + 0.11 - 1.44 

1b (CH
2
)

2
CH

3
 CH

3
 8.80 (±0.20) - 0. 52 + 0.21 -1.21 

1c (CH
2
)

3
CH

3
 CH

3
 8.69 (±0.18) - 0.07 + 0.43 -0.88 

2a CH
2
CH

3
 Ph 8.85 (±0.38) + 0.31 + 1.09 -0.37 

3a CH
2
CH

3
 (CH

3
)

3
 8.90 (±0.36) + 0.48 + 1.22 -0.29 

Cysteamine 

HCl 

- - 
8.15 (± 0.15 thiol), 

10.52 (± 0.40 amine) 
-0.1 + 0.06 -2.28 

Cystamine 

dihydrochloride 

- - 9.11 (±0.12) -0.74 -0.46 -2.18 
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The measured pKa values indicate that the prodrugs are likely to remain largely ionized 

throughout the GI tract after oral administration, with up to 20 % unionized amine present in the 

small intestine to facilitate absorption. Both the measured and calculated log P values increased in 

parallel with homologation of the α-ester and variation of the thioester group. Although not optimal, 

these characteristics are comparable to many orally administered agents in clinical use and are 

consistent with the aim of designing prodrugs with clinical potential for oral administration. 

 

2.4 In vitro studies 

Provided cysteamine is not significantly released from the prodrugs during incubation in the 

medium, successful cellular uptake and hydrolysis of the prodrugs can be demonstrated by 

measuring the increased levels of intracellular cysteamine. The possibility of prodrug hydrolysis in 

fetal bovine serum-containing medium was investigated in separate experiments using prodrug 1a 

and γ-glutamyl-cysteamine 4 with LC-MS analysis. Slow hydrolysis of the thioester and, to a lesser 

extent, the α-carboxyl ester was observed, but the γ-glutamyl-cysteamine bond was not cleaved over 

24 hours (data not shown). It was concluded that hydrolysis of the prodrug to release cysteamine by 

the action of serum esterase and GGT in the culture medium was unlikely.  

Exposure of cultured cells to the prodrugs, followed by measurement of the resulting 

intracellular cysteamine concentrations, allowed the investigation of three indicators: the uptake of 

prodrugs into the cells, the successful ester/thioester hydrolysis of the prodrugs, and the release of 

cysteamine from γ-glutamyl-cysteamine 4. Following treatment of cultured proximal tubule 

epithelial cells with test agents, the intracellular cysteamine concentration was quantified using 2-

chloro-1-methylquinolinium tetrafluoroborate (CMQT) as a pre-column derivatising agent and 

HPLC. CMQT reacts instantaneously and highly specifically with thiols, under mild conditions, to 

form a thiol-CMQT derivative that can be quantified using HPLC with ultraviolet or fluorescent 

detection [34]. HPLC conditions, equipment and validation data are included in the Supporting 

Information. 
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2.4.1 Prodrug uptake and cysteamine release in proximal tubular cells 

A normal cultured human proximal tubular (kidney) cell line, PT37 [37], was used to assess the 

cellular uptake and release of cysteamine from esterified prodrugs 1a-c, 2a and 3a, using 

cysteamine and its disulfide cystamine as controls. The concentration of 20 µM prodrug was chosen 

to mimic cysteamine levels in the blood of patients treated with Cystagon® and is in line with the 

established EC50 of 12.5 µM [7]. Following prodrug exposure, the intracellular concentration of 

cysteamine was measured after cell lysis, centrifugation and Bradford assay of the pellet protein 

content, supernatant thiol derivatization with the tagging agent CMQT, followed by HPLC analysis 

using simultaneous UV and fluorescence detection, Figure 2.  

 

                                                              Prodrug 1a       Prodrug 1b 

 

       Prodrug 1c       Prodrug 2a 

 

  Prodrug 3a   Cystamine dihydrochloride 
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Figure 2: Cysteamine concentration in PT37 cells treated with 20 µM prodrugs 1a-c, 2a, 3a or cystamine 

dihydrochloride, each in comparison to cysteamine hydrochloride (dashed line). Each point represents mean 

concentration (n = 3) and error bars represent standard error. 

 

Analysis of untreated PT37 cells showed no cysteamine-CMQT peak, indicating an initial 

intracellular cysteamine concentration below the level of detection (< 160 nM). Cysteamine uptake 

into cells following treatment with cysteamine hydrochloride was confirmed by the detection of 

cysteamine-CMQT. Cysteamine uptake was rapid, peaking after two hours; the level was 

maintained at 0.84 ± 0.06 nmol/mg protein until around 6 hours, dropping to 0.22 ± 0.04 nmol/mg 

protein after 24 hours, suggesting that cysteamine is metabolized after internalization. The 

intracellular level of cysteamine did not continue to rise when its concentration was maintained in 

the medium at 20 µM, supporting the observation that cysteamine uptake may be saturable [38].  

When exposed to air, cysteamine is rapidly oxidized to its disulfide form, cystamine [39], 

particularly when in dilute aqueous solution. The rate of oxidation of cysteamine hydrochloride in 

aqueous solution was investigated by HPLC with UV detection, using pre-analysis derivatisation by 

CMQT. Only the reduced thiol form can react with CMQT and is selectively detected, Figure 3.  

 

Figure 3: Oxidation of cysteamine (0.01 M cysteamine hydrochloride in water, room temperature, in 

triplicate); detected as the CMQT derivative using HPLC with UV detection. 

 

The oxidation of cysteamine hydrochloride in water (pH 4.66) occurred rapidly, falling to 

50% within 1 hour; after approximately 3 hours, there was no detectable cysteamine in the solution. 

When PT37 cells were treated directly with the disulfide, cystamine dihydrochloride, the total 

intracellular levels of cysteamine were considerably lower than those observed when the same cells 
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were treated with cysteamine hydrochloride; the dicationic hydrophilic nature of cystamine is likely 

to hinder uptake into the cell and the efficiency of its intracellular bioreduction has not been 

established, thus cystamine has not found application for the treatment of cystinosis.  In addition to 

extensive first pass metabolism, oxidation to the disulfide may be partly responsible for the poor 

bioavailability of cysteamine in the therapy of cystinosis. A number of thioesters of cysteamine 

were synthesized and showed significantly increased stability to oxidation compared to cysteamine 

(data not shown). The use of thioester groups in the prodrugs inhibits oxidation of the free thiol to 

the disulfide with the aim of increasing cysteamine bioavailability. 

Cysteamine-CMQT was also observed when cells were treated with any of prodrugs 1a-c, 

2a and 3a, providing evidence for their uptake and hydrolysis to release cysteamine. Peak levels of 

cysteamine were not reached until 6 hours after exposure, consistent with the requirement for 

enzymatic action on the α-carboxyl ester, thioester, and γ-glutamyl groups to release cysteamine. In 

agreement with the measured log P values (Table 2), the S-acetyl prodrugs 1a-c (with lower MlogP 

values) were associated with a slower increase in cysteamine concentration than the S-benzoyl 2a 

and S-pivaloyl 3a prodrugs (with higher MlogP values and greater lipophilicity). In this instance, 

due to the minimal hydrolysis of esters in the culture medium, it is probable that the ester/thioester 

prodrugs were internalised by passive diffusion, with no involvement of GGT, and broken down 

intracellularly to release cysteamine.  

 

3. Conclusion 

 Nine esterified γ-glutamyl-cysteamine prodrugs were designed to overcome some of 

the undesirable properties of the pharmaceutical product cysteamine. Derivatization as the γ-

glutamyl-derivative was successful, offering increased metabolic stability, and physicochemical 

properties suitable for oral bioavailability were achieved by esterification of the glutamate α-

carboxyl group, while oxidation of the thiol was inhibited by thioester formation. In addition, 

particularly low cytotoxicity of 1a, 1b and 1c in HaCaT keratinocytes was observed using the MTT 
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assay; α-ethyl esters 2a and 3a showed similar cytotoxicity to that of cysteamine in this system, 

while acetyl thioesters 1a-c exhibited lower cytotoxicity than cysteamine. These ester/thioester γ-

glutamyl-cysteamine prodrugs displayed uptake into cells, ester and thioester hydrolysis, and 

release of cysteamine, with a delay to its release consistent with the requirement for activation of 

the prodrug. Furthermore, the prodrugs maintained the concentration of cysteamine at above 

baseline levels for at least 24 hours, comparative to or better than that achieved by cysteamine 

hydrochloride and significantly better than that achieved by cystamine dihydrochloride. These data 

support the in vivo efficacy evaluation of cysteamine prodrugs in a validated animal model for their 

potential as an alternative oral treatment for cystinosis.  

This targeted prodrug approach to the delivery of cysteamine may also have application to 

the treatment of other diseases, such as Huntington’s disease, cystic fibrosis and non-alcoholic 

steatohepatitis (NASH), in which recent research has demonstrated a beneficial effect of 

cysteamine.  

 

4. Experimental 

Supporting Information available: general methods and examples are shown in this section. 

Full experimental data are available as Supporting Information.  

The structures of products were assigned using IR, 1H NMR and 13C NMR spectroscopy, 

including 2D techniques (COSY, HMQC, HMBC), and by mass spectrometry. The purity of 

products was confirmed as >95 % using elemental analysis, HPLC with UV detection, or LC-MS. 

Unless stated otherwise, all chemicals and solvents were obtained from Sigma Aldrich (UK) and 

used without further purification. Solvents were dried using the Pure SolvTM  purification system 

(Innovative Technology, Inc). TLC was carried using silica gel matrix on aluminium foil (Sigma 

Aldrich). Column chromatography used silica gel, particle size 35-70 micron (Fisher Scientific). 

CHN analysis, NMR spectroscopy and mass spectrometry were carried out using, respectively, an 

Exeter Analytical CE 440 Elemental Analyzer instrument, AVANCE DPX 300MHz Bruker NMR 
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instrument at 300 MHz (1H) or 75MHz (13C) and an Esquire 3000+ Ion Trap mass spectrometer. IR 

spectroscopy was carried out with a Perkin Elmer Spectrum BX FT-IR system. Melting point 

determination was carried out using a Stuart SMP 30 melting point apparatus. ESI HRMS was 

performed courtesy of the EPSRC National Mass Spectrometry Service Centre.  

 

4.1. General method for preparation of compounds 6a-c 

2-(S)-tert-Butoxycarbonylamino-pentanedioic acid 5-benzyl ester 5 was dissolved in 

methanol with 10 % water (10 mL). The solution was neutralized to pH 7 by drop-wise addition of 

aqueous Cs2CO3 (20%). Following evaporation under high vacuum, the resulting syrup was 

dissolved in dry DMF (20 mL) and treated with the appropriate alkyl bromide (2.88 molar 

equivalents). The reaction was stirred at room temperature overnight. Ethyl acetate (20 mL) was 

added and the organic layer washed with water (3 x 20 mL), 10 % K2CO3 (2 x 20 mL), and brine 

(20 mL), and then dried over magnesium sulfate. The resulting solution was concentrated under 

reduced pressure to afford the product as a white solid. 

 

4.1.1 2-(S)-tert-Butoxycarbonylamino-pentanedioic acid 5-benzyl ester 1-propyl ester (6b) 

Following the procedure described in 4.1, the reaction of 2-tert-butoxycarbonylamino-

pentanedioic acid 5-benzyl ester 5 (1.00 g, 2.96 mmol)  with propyl bromide (1.05 mL, 8.52 mmol) 

gave product 6b (1.01 g, 90 %):  Mp 51-52 ⁰C; 1H NMR (300 MHz, CDCl
3
) δ

H
 0.95 (t, J = 7.1 Hz, 

3H, 3'-CH
3
), 1.43 (s, 9H, t-Boc CH

3
), 1.68 (sextet, J = 7.1 Hz, 2H, 2'-CH

2
), 1.96 (m, 1H, 3-CH

a
), 

2.21 (m, 1H, 3-CH
b
), 2.41 (dd, J = 16.5 and 6.8 Hz, 1H, 4-CH

a
), 2.50 (dd, J = 16.5 and 6.8 Hz, 1H, 

4-CH
b
), 4.09 (t, J = 7.1 Hz, 2H, 1'-CH

2
), 4.33 (m, 1H, 2-CH), 5.08 (br d, 1H, NH), 5.12 (s, 2H, 

CH
2
Ph), 7.35 (m, 5H, CH

2
Ph); 13C NMR (75 MHz, CDCl

3
) δ

C 
10.3 (3'-C), 21.9 (2'-C), 28.0 (3-C), 

28.3 (t-Boc CH
3
), 30.4 (4-C), 53.0 (2-C), 62.1 (1'-C), 66.5 (CH

2
Ph), 80.0 (quat., t-Boc C), 128.3 (Ph 

CH), 128.3 (Ph CH), 128.6 (Ph CH), 135.9 (quat., Ph C),  155.4 (quat., NCO2), 172.2 (quat., 5-C), 

172.5 (quat., 1-C); IR cm-1 3361 (N-H), 1760 (C=O, ester), 1720 (C=O, ester), 1686 (C=O, 
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carbamate), 1365 (C-N), 1169 (C-O), 750, 698 (Ar C-H); Anal. calculated for C
20

H
29

NO
6 (Mr 

379.45) C 63.31 , H 7.70 , N 3.69 %; Found C 63.51 , H 7.68, N 3.73 %; ESI MS 401.1 [MNa+]. 

 

4.2. General method for preparation of compounds 7a-c 

 Compounds 6a-c were dissolved in methanol (50 mL). Palladium on carbon (10%, Alfa 

Aesar) was added (0.1 mass equivalent) and the mixture was stirred for approximately 3 hours, at 

room temperature, under a hydrogen atmosphere at 3 bars of pressure. The catalyst was removed by 

filtration over celite and the resulting solution was concentrated under reduced pressure to afford a 

colourless oil, which was dissolved in a minimum amount of ethyl acetate, and then hexane was 

added until the solution became turbid. The solution was stored at 0°C overnight and the resultant 

precipitate was collected by filtration.  

 

4.2.2 2-(S)-tert-Butoxycarbonylamino-pentanedioic acid 1-butyl ester (7c) 

Following the procedure described in 4.2, compound 6c (2.0 g, 5.08 mmol) was reduced to give 

product 7c (1.377 g, 89 %): Mp 52-54 ºC; 1H NMR (300 MHz, CDCl
3
) δ

H
 0.92 (t, J = 7.1 Hz,  3H, 

4'-CH
3
), 1.36 (sextet, J = 7.1 Hz, 2H, 3'-CH

2
), 1.43 (s, 9H, t-Boc CH

3
), 1.62 (quintet, J = 6.5 Hz, 

2H, 2'-CH
2
), 1.95 (m, 1H, 3-CH

a
), 2.15 (m, 1H, m, 3-CH

b
), 2.41 (dd, J = 16.7 and 6.9 Hz, 1H, 4-

CH
a
), 2.51 (dd, J = 16.7 and 6.9 Hz, 1H, 4-CH

b
), 4.13 (t, J = 6.5 Hz, 2H, 1'-CH

2
), 4.30 (m, 1H, 2-

CH), 5.24 (br d, 1H, NH); 13C NMR (75 MHz, CDCl
3
) δ

C
 13.6 (4'-C), 19.0 (3'-C), 27.7 (3-C), 28.2 

(t-Boc CH
3
), 30.0 (4-C), 30.5 (2'-C), 52.9 (2-C), 65.4 (1'-C), 80.1 (quat., t-Boc C), 155.5 (NCO

2
), 

172.3 (quat., 1-C), 177.0 (quat., 5-C); IR cm-1 3357 (N-H), 2962 (broad, O-H), 1709 (broad, 

C=O),1367 (C-N), 1160 (C-O); Anal. calculated for C
14

H
25

NO
6
 (Mr 303.36) C 55.43 , H 8.31 , N 

4.62 %; Found C 55.57, H 8.19 , N 4.78 %; ESI MS 326.2 [MNa+]. 
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4.3. General method for preparation of compounds 8a-c  

 Compounds 7a-c were dissolved in dry DCM (1g in 50 mL) under nitrogen. To this was 

added triethylamine (1 mol equivalent), HOBt (1 mol equivalent) and 1,3-diisopropylcarbodiimide 

(1 mol equivalent)and the mixture was stirred, at 0⁰C for 15 minutes. Cysteamine hydrochloride (1 

mol equivalent) was then added and the mixture stirred at 0°C for 45 minutes, then at room 

temperature overnight. The solution was filtered and the combined organic layers were washed with 

10% w/v potassium carbonate, 10% w/v citric acid and water, and then dried over magnesium 

sulfate. The resulting solution was concentrated under reduced pressure to afford the crude product. 

Purification by column chromatography (petrol/ethyl acetate as eluent) on silica was carried out to 

obtain the corresponding pure compound as a white solid 8a-c.  

 

4.3.1 2-(S)-tert-Butoxycarbonylamino-4-(2-mercapto-ethylcarbamoyl)-butyric acid butyl ester (8c) 

Following the procedure described in 4.3, the reaction of compound 7c (0.74  g, 2.44 mmol) 

with cysteamine hydrochloride gave product 8c (0.62 g, 70 %): Mp 62-63 ⁰C; 1H NMR (300 MHz, 

CDCl
3
)  δ

H
 0.94 (t, J = 7.2 Hz, 3H, 4'-CH

3
), 1.3 (t, J = 6.5 Hz, 1H, SH), 1.31 (sextet, J = 7.2 Hz, 

2H, 3'-CH
2
), 1.43 (s, 9H, t-Boc CH

3
), 1.65 (quintet, J = 7.2 Hz, 2H, 2'-CH

2
), 1.97 (m, 1H, 3-CH

a
), 

2.20 (m, 1H, 3-CH
b
), 2.41 (dd, J = 16.5 and 6.8 Hz, 1H, 4-CH

a
), 2.50 (dd, J = 16.5 and 6.8 Hz, 1H, 

4-CH
b
),  2.62 (q, J = 6.5 Hz, 2H, 8-CH

2
), 3.36 (q, J = 6.5 Hz, 2H, 7-CH

2
), 4.07 (t, J = 7.2 Hz, 2H, 

1'-CH
2
), 4.33 (m, 1H, 2-CH), 5.14 (br d, 1H, 2-CNH), 6.22 (br s, 1H, 6-NH); 13C NMR (75 MHz, 

CDCl
3
) δ

C
 10.35 (4'-C), 21.9 (3'-C), 24.6 (8-C), 28.3 (t-Boc CH

3
), 28.7 (3-C), 30.4 (8-C), 32.6 (4-

C), 38.5 (2'-C), 39.5(7-C), 53.3 (2-C), 67.1 (1'-C), 80.2 (quat., t-Boc C), 155.9 (quat., NCO
2
), 172.4 

(quat., 5-C), 172.6 (quat., 1-C); IR cm-1 3350 (N-H), 2422 (SH), 1721 (C=O, ester), 1683 (C=O, 

carbamate), 1649 (C=O, amide), 1348 (C-N), 1162 (C-O); Anal. calculated for C
16

H
30

N
2
O

5
S (Mr 

362.48): C 53.28 , H 8.34 , N 7.73 %; Found: C 53.41, H 8.18, N 7.78 %; ESI MS 385.2 [MNa+]. 
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4.4. General method for preparation of compounds 9a-c 

Compounds 8a-c and triethylamine (1 mol equivalent) were protected from moisture and 

stirred in dry THF (1g in 30 mL) at room temperature. To this acetic anhydride (1 mol equivalent) 

was added and the mixture stirred at 40⁰C overnight. The organic layer was washed with 10% 

potassium carbonate, brine and water, and then dried over magnesium sulfate. The resulting 

solution was concentrated under reduced pressure to afford the product crude product. Purification 

by column chromatography on silica (dichloromethane/methanol as eluent) on silica was required 

for obtaining the corresponding pure products 9a-c as a white solid. 

 

4.4.1 4-(2-Acetylsulfanyl-ethylcarbamoyl)-2-(S)-tert-butoxycarbonylamino-butyric acid butyl ester 

(9c) 

 Following the procedure described in 4.4, the reaction of compound 8c (1.00 g, 2.76 mmol)) 

with acetic anhydride gave product 9c (0.62 g, 55 %): Mp 70-72 ⁰C; 1H NMR (300 MHz, CDCl
3
) 

δ
H
 0.93 (t, J = 7.1 Hz, 3H, 4'-CH

3
), 1.38 (sextet, J = 7.1 Hz,  2H, 3'-CH

2
), 1.45 (s, 9H, t-Boc CH

3
), 

1.63 (quintet, J = 7.1 Hz, 2H, 2'-CH
2
), 1.92 (m, 1H, 3-CH

a
), 2.15 (m, 1H, 3-CH

b
), 2.25 (dd, J = 16.4 

and 6.7 Hz, 1H, 4-CH
a
), 2.29 (dd, J = 16.4 and 6.7 Hz, 1H, 4-CH

b
), 2.35 (s, 3H, 11-CH

3
),  3.04 (t, J 

= 6.5 Hz, 2H, 8-CH
2
), 3.44 (q, J = 6.5 Hz, 2H, 7-CH

2
), 4.14 (t, J = 7.1 Hz, 2H,  1'-CH

2
), 4.27 (m, 

1H, 2-CH), 5.30 (br d, 1H, 2-CNH), 6.30 (br s, 1H,m, 6-NH); 13C NMR (75 MHz, CDCl
3
) δ

C
 13.7 

(4'-C), 19.1 (3'-C), 28.4 (t-Boc CH
3
), 28.9 (3-C), 29.1(8-C), 30.6 (11-C) 30.6 (2'-C), 32.6 (4-C), 

39.5 (7-C), 53.2 (2-C), 65.5 (1'-C), 80.1 (quat., t-Boc C), 155.9 (quat., NCO
2
), 172.1 (quat., 5-C), 

172.3 (quat., 1-C), 196.0 (quat., 10-C); IR cm-1 3320 (N-H), 1728 (C=O, ester), 1695 (C=O, 

thioester) 1686 (C=O, carbamate), 1648 (C=O, amide), 1367 (C-N), 1164 (C-O); Anal. calculated 

for C
18

H
32

N
2
O

5
S (Mr 404.52) C 53.44, H 7.97, N 6.93 %; Found C 53.77, H 8.03, 6.95 %; ESI MS 

427.2 [MNa+]. 
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4.5. General method for preparation of compounds 10a-c 

Compounds 8a-c were stirred in dry dichloromethane (1g in 30 mL), under dry conditions 

and at room temperature. To this was added pyridine (1 mol equivalent) and benzoyl chloride (1 

mol equivalent) and the mixture was stirred at room temperature overnight. The organic layer was 

washed with 10% potassium carbonate, brine and water, and then dried over magnesium sulfate. 

The resulting solution was concentrated under reduced pressure to afford the crude product. Column 

chromatography (petrol/ethyl acetate as eluent) on silica was required to obtain the corresponding 

pure product 10a-c as a white solid. 

 

4.5.1 4-(2-Acetylsulfanyl-ethylcarbamoyl)-2-(S)-tert-butoxycarbonylamino-butyric acid ethyl ester 

(10a) 

Following the procedure described in 4.5, the reaction of compound 8a (0.25 g, 0.75 mmol) 

with benzoyl chloride gave product 10a (0.08 g, 24 %): Mp 78-79 ⁰C; 1H NMR (300 MHz, CDCl
3
) 

δ
H
 1.26 (t, 3H, J = 7.0 Hz, 2'-CH

3
), 1.43 (s, 9H, t-Boc CH

3
), 1.93 (m, 1H, 3-CH

a
), 2.19 (m, 1H, 3-

CH
b
), 2.26 (dd, J = 16.6 and 6.9 Hz, 1H, 4-CH

a
), 2.29 (dt, J = 16.6 and 6.9 Hz, 1H, 4-CH

b
), 3.25 (t, 

J = 6.3 Hz, 2H, 8-CH
2
), 3.55 (q, J = 6.3 Hz, 2H, 7-CH

2
), 4.18 (q, J = 7.0 Hz, 2H, 1'-CH

2
), 4.27 (m, 

1H, 2-CH), 5.28, (br d, 1H, 2-CNH),  6.44 (br s, 1H, 6-NH), 7.44 (t, J = 7.2 Hz, 2H, 13-CH), 7.59 

(tt, J = 7.2 and 1.4 Hz, 1H, 14-CH), 7.96 (dd, J = 7.2 and 1.4 Hz, 2H, 12-CH); 13C NMR (75 MHz, 

CDCl
3
) δ

C
 14.2 (2'-C), 28.3 (t-Boc CH

3
), 28.6 (3-C), 29.1(8-C), 32.6 (4-C), 39.6 (7-C), 53.1 (2-C), 

61.5 (1'-C), 80.1 (quat., t-Boc C), 127.3 (Ph CH), 128.7 (Ph CH), 133.6 (Ph CH), 136.8 (quat., 11-

C), 158.3 (quat., NCO
2
), 172.2 (quat., 5-C), 172.3 (quat., 1-C), 192.0 (quat., 10-C); IR cm-1 3348 

(N-H), 1734 (C=O, ester), 1678 (C=O, carbamate), 1662 (C=O, thioester), 1644 (C=O, amide), 

1367 (C-N), 1160 (C-O), 777 and 688 (Ar C-H); Anal. calculated for C
21

H
30

N
2
O

6
S (Mr 438.54) C 

57.51, H 6.90, N 6.39 %; Found C 57.52, H 6.96, N 6.36 %; ESI MS 461.2 [MNa+]. 
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4.6. General method for the preparation of compounds 11a-c 

Compounds 8a-c were stirred in dry dichloromethane (1g in 30 mL), under dry conditions 

and at room temperature. To this was added pyridine (1 mol equivalent) and pivaloyl chloride (1 

mol equivalent) and the mixture was stirred at room temperature overnight. The organic layer was 

washed with 10% potassium carbonate, brine and water, then dried over magnesium sulfate. The 

resulting solution was concentrated under reduced pressure to afford the crude product. Column 

chromatography (petrol/ethyl acetate as eluent) on silica and recrystallisation (ethyl acetate/hexane) 

was required to obtain the corresponding pure product 11a-c as a white solid. 

 

4.6.1 2-(S)-tert-Butoxycarbonylamino-4-[2-(2,2-dimethyl-propionylsulfanyl)-ethylcarbamoyl]-

butyric acid propyl ester (11b) 

Following the procedure described in 4.6, the reaction of compound 8b (0.20 g, 0.57 mmol) 

with pivaloyl chloride gave product 11b (0.10 g, 43 %): Mp 38-40 ⁰C; 1H NMR (300 MHz, CDCl
3
) 

δ
H
 0.94 (t, J = 7.0 Hz, 3H, 3'-CH

3
), 1.24 (s, 9H, 12-CH

3
), 1.44 (s, 9H, t-Boc CH

3
), 1.67 (sextet, J = 

7.0 Hz, 2H, 2'-CH
2
), 1.91 (m, 1H, 3-CH

a
), 2.15 (m, 1H, 3-CH

b
), 2.24 (dd, J = 16.4 and 6.8 Hz, 1H, 

4-CH
a
), 2.26 (dd, J = 16.4 and 6.8 Hz, 1H, 4-CH

b
), 3.00 (t, J = 6.3 Hz, 2H, 8-CH

2
), 3.42 (q, J = 6.3 

Hz, 2H, 7-CH
2
), 4.10 (t, J = 7.0 Hz, 2H, 1'-CH

2
), 4.27 (m, 1H, 2-CH), 5.30 (br d, 1H, 2-CNH), 6.35 

(br s, 1H, 6-NH); 13C NMR (75 MHz, CDCl
3
) δ

C
 10.3 (3'-C), 21.9 (2'-C), 27.4 (12-C), 28.1 (3-C), 

28.3 (t-Boc CH
3
), 29.0 (8-C), 32.6 (4-C), 39.6 (7-C), 46.5 (quat., 11-C),  53.1 (2-C), 67.1 (1'-C), 

80.0 (quat., t-Boc C), 155.8 (quat., NCO
2
), 172.0 (quat., 5-C), 172.3 (quat., 1-C), 207.1 (quat., 10-

C); IR cm-1 3320 (N-H), 1678 (broad, C=O), 1365 (C-N), 1165 (C-O); Anal. calculated for 

C
20

H
36

N
2
O

6
S (Mr 432.57) C 55.53, H 8.39, N 6.48 %; Found C 55.30, H 8.65, N 6.55 %; ESI MS 

455.2 [MNa+]. 
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General method for the preparation of prodrugs 1-3a-c 

Individually, compounds 9a-c, 10a-c and 11a-c were dissolved in a solution of HCl (2M) in 

diethyl ether (Alfa Aesar) and stirred at room temperature. The reaction was monitored by TLC 

(petroleum ether/ethyl acetate).  

Following the general procedure, compound 9a (3.00 g, 3.97 mmol) was stirred in HCl (2M) 

in diethyl ether overnight (100 mL). The white precipitate was collected, washed with diethyl ether 

and dried under vacuum (2.01 g, 80 %): Mp: 97-100 ˚C; 1H NMR (300 MHz, d
6
-DMSO) δ

H
 1.21 (t, 

J = 7.0 Hz, 3H, 2'-CH
3
), 2.10 (m, 1H, 3-CH

a
), 2.15 (m, 1H, 3-CH

b
), 2.25 (dd, J = 16.6 and 7.2 Hz, 

1H, 4-CH
a
), 2.29 (dd, J = 16.6 and 7.2 Hz, 1H, 4-CH

b
), 2.30 (s, 3H, 11-CH

3
),  2.74 (t, J = 6.6 Hz, 

2H, 8-CH
2
), 3.29 (q, J = 6.6 Hz, 2H, 7-CH

2
), 4.15 (q, J = 7.0 Hz, 2H, 1'-CH

2
), 4.20 (m, 1H, 2-CH); 

13C NMR (75 MHz, d
6
-DMSO) δ

C
 14.7 (2'-C), 23.2 (3-C), 28.8 (11-C), 30.5 (8-C), 32.6 (4-C), 39.5 

(7-C),  53.1 (2-C), 61.5 (1'-C), 172.4 (quat., 5-C), 172.6 (quat., 1-C), 196.0 (quat., 10-C); IR cm-1 

3330 (N+-H
3
), 1656 (broad, C=O), 1366 (C-N), 1151 (C-O); Anal. calculated for C11H21ClN2O4S 

(Mr 312.81) C 42.24, H 6.77, N 8.96 %; Found C 42.08, H 6.53, N 8.74 %; HRMS calculated for 

[C
11

H
21

N
2
O

4
S]+ 277.1217, found 277.1217. 

 

Cell lines 

 HaCaT keratinocytes were commercially obtained from Cell Line Services. PT37 cells were 

donated by the Leuven University Hospital, Belgium. Cell lines were cultured in DMEM/F12 

medium (Invitrogen) supplemented with 2 mM L-glutamine (1%, Sigma Aldrich), penicillin-

streptomycin (1%, Sigma Aldrich) and heat inactivated fetal calf serum (10%, Biosera). Cell 

monolayers were maintained at 37 °C under an atmosphere containing 5% carbon dioxide. 

 

General method for MTT assay 

Prodrugs were dissolved in medium to give a starting concentration of 500 µg/mL. In a 96 

well plate, serial dilutions were carried out to give subsequent concentrations of 250, 125, 62.5, 



Eur. J. Med Chem. 109 (2016) 206-215. 
 

 23 

 

31.25, 15.625, 7.81, 3.91 and 1.95 µg/mL. Cells were exposed to the prodrugs for a period of 48 

hours while incubated at 37 ⁰C under 5% carbon dioxide. Following exposure, the prodrug 

containing medium was removed and the cells in the 96 well plates were rinsed with PBS. MTT 

(0.5 mg/mL in PBS, 200 µL) was added to each well and incubated for two hours at 37 ⁰C under 

5% carbon dioxide. Upon removal of the dye, the cells were again washed with PBS before the 

addition of a solution of 90% isopropanol and 10% DMSO (200 µL). The plates were incubated in 

the dark for 10 minutes and then the absorbance was recorded at 595 nm using a Teccan plate 

reader and Revelation software. EC50 values were calculated from the dose response curves by non-

linear regression analysis using GraphPad Prism®. Cell survival was expressed as a percentage 

compared to control wells.  Percentage survival value at each concentration represents 12 replicates, 

which were averaged and normalised to calculate the percentage survival. 

 

General method for Sirius T3 measurement of pKa and Log P 

To measure the pKa, between 1-2 mg of test compound was weighed accurately into a vessel 

and placed into the Sirius T3 instrument for pH metric analysis. The pKa was computationally 

determined following the automated potentiometric acid-base titration over a pH range of 2 to 12 

(mean of 3 titrations). For the automated pH-metric measurement of Log P, an accurately weighed 

sample was dissolved in a two-phase water-octanol system (1:2), and titrated over a pH range (2 to 

12). Log P results were obtained by computational process using the Sirius T3 software.  

 

General method for measurement of total cellular cysteamine content 

Test prodrugs were dissolved in culture medium to obtain the required concentration (20 

µM). Confluent cell monolayers were incubated with the prodrug-containing medium at 37°C for a 

defined time period (0, 2, 6, 16 or 24 hours). Monolayers were harvested using trypsin-EDTA 

(0.25%), re-suspended in growth medium and centrifuged for 5 minutes at 1000 rpm. The resulting 

cell pellets were washed with cold PBS with centrifugation at 1000 rpm for a further five minutes. 
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The pellets were then re-suspended in sucrose (400 µL, 0.25 M) and sonicated before the 

suspension was centrifuged at 13,000 rpm for ten minutes. Following pellet suspension, 10 µL of 

the cell supernatant was added to a microplate (in triplicate). To this, was added 240 µL Bradford 

reagent (Sigma Aldrich, Poole, UK) and the plate incubated for 5 minutes at 37 °C. The absorbance 

was then measured at 595 nm. The protein concentration was determined by comparison to a 

calibration curve prepared using bovine serum albumin standards (0.1 – 1.5 mg/mL protein). 

The resultant supernatant was stored at -80°C until HPLC analysis. For HPLC analysis, cell 

supernatant (150 µL), 1-octanol (30 µL), sodium borohydride (40 µL, 4 M in a solution of 0.1 M 

NaOH/DMSO (300 mL/L)) and HCl (30 µL, 3M added dropwise) were added to a reaction vial and 

vortex mixed for 3 minutes. This was followed by the addition of N-ethylmorpholine (100 µL, 

1.6M), phosphate buffer (100 µL, 0.2 M) and CMQT (20 µL, 0.1 M), before mixing for a further 3 

minutes. Lastly, glacial acetic acid (50 µL, 0.5 M) was added before HPLC analysis.  
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